

NC STATE UNIVERSITY

Research Triangle Nanotechnology Network: Convergence Nanotechnology Hub

Jacob Jones (Director, NC State), David Berube (NC State), Nina Balke (NC State), Phil Barletta (NC State), Nan Jokerst (Duke), Mark Walters (Duke), Bob Geil (UNC), Jim Cahoon (UNC), & Phillip Strader (NC State)

www.rtnn.org rtnanonetwork@ncsu.edu

A site in the National Nanotechnology Coordinated Infrastructure (NNCI) supported by Grant No. ECCS-2025064.

Overview

hub for transformative nanotechnology research, fabrication, commercialization, and education that leverages the capabilities and expertise of user facilities at research universities in the Research Triangle.

Core Strengths

- Turn-key and dynamic facilities
 - >65 new/upgraded tools introduced into facilities since 2016 (>\$20M value)
- Unique capabilities
 - Bio-processing bays, plasma focused ion beam microscopy, hot embosser, X-ray and neutron imaging, bio- and cryo-electron microscopy, in situ microscopy and diffraction
- Well-supported faculty research in nanotechnology
- Large non-traditional, multidisciplinary user community
- Well-established user base in traditional technologies
- Expertise in emerging needs and capabilities
 - Non-traditional characterization and fabrication (e.g. soft, bio-based, and flexible materials)
- Capacity for technology transfer
 - Research Triangle Park, NC State's Centennial Campus
- Quantitative social science research

Research Focus Areas Linked to NSF Big Ideas

- Low Dimension and Layered Nanomaterials
- Materials for Energy Efficiency and Sustainability
- Nanomaterials for Biology, Medicine and Environmental Assessment
- AdvancedMaterials andInterfaces

Actively Tunable Metasurfaces via Plasmonic Nanogap Cavities with sub-10 nm VO₂ Films¹

Quantum Leap

Mich E.

Microfluidic Model of Monocyte
Extravasation Reveals the
Role of Hemodynamics in
Regulating Endothelial
Integrity³

Rules of Life

Multimaterial Self-Aligned
Nanopatterning by
Simultaneous Adjacent Thin
Film Deposition and Etching⁴

Building the User Base

Kickstarter Program

- Provide free access to facilities to new, non-traditional users
- 87 projects (>1,300 hours of use)
- >40% of participants have returned to facilities with own financial support (>\$302,000 in facility fees)

"...it really helped us move along in our research project."

"...the staff was very, very helpful."

Affiliations of Kickstarter participants

Selected Participant Results

Sensors based on a Carbon-Copper Composite for the Detection of Glyphosate

Nanotechnology: A Maker's Course

Magnetic control of the

endothelium permeability and

TEM Imaging of nanoparticles

- Massive Open Online Course (hosted on Coursera)
- Educational foundation in nano-fabrication and characterization
- Demonstrations of state of the art equipment
- Since September 2017 launch:

ECU

- >261,100 visitors; >32,800 enrolled
- High satisfaction, e.g. course materials rated 6.4 on a scale with 7 being the highest
- > 90% of respondents "likely" or "very likely" to recommend course

"Gracias…me divertí mucho en este curso y definitivamente con mas ganas de seguir aprendiendo."

www.coursera.org/learn/nanotechnology

Spit-mg resonators board board

Lecture on nanofabrication

Demo of energy-dispersive X-ray spectroscopy

Photolithography demo in the clean room

Technical workshops and short courses

- Exposure to cutting-edge equipment and techniques
- Hands-on learning experiences prepare participants for use
- **2021-2022: >10 events, >115 participants**

Workshop attendees analyzing samples using Raman spectroscopy

cipants working on a Community college educators vacuum system gowned for clean room entry

Community Engagement

- Immersive lab experiences
- Remote connections to instruments, students, and staff in the facilities
- Classroom visits with portable SEM
- Partnerships with Girl Scouts, museums, and libraries
- NanoDays: lab tours, demos, and hands-on activities

Remote SEM session

with 5th grade classroom

Day @ Duke

Visitors examine samples with light and electron microscopes during Nanomonth at the Museum of Life and Science

Impact

- User base
 - >1,000 users and >50,000 hours of collective use annually
- Research projects with diverse funding sources
- Industry
 - Invaluable resource to small companies
- Publications: >210 peer-reviewed publications (2021)
- Patents: >30 awarded, >50 filed (2021)
- NNCI network activities
 - Leadership of NNCI subcommittees/working groups, multi-site proposals
- Engagement
 - > 1,200 people reached so far in Year 7
 - > 60% participation by girls and underrepresented minorities in STEM (NSF INCLUDES)

Societal Implications of Nanotechnology

Goals: Leverage the RTNN team and user base to:

- 1) enhance the instruction and understanding of how humans engage with nanotechnology (Future of Work),
- 2) study governance involving multiple stakeholder groups
- Deep assessment
- Quantitative evaluation of programs drives change
- Nanotechnology resources for the public
- New social media programs to study how social networks influence nanotechnologists' decision making
- Clearinghouse of crowd-sourced nanotechnology information

Continuous

Improvement

References: 1. Boyce et al. In Press at Nano Letters (2022); 2. Sakakibara et al Solar Energy Materials and Solar Cells 238 (2022); 3. Perez-Rodriguez et al. Biomicrofluidics 15 (2021); 4. Song et al. ACS Nano 15 (2021)